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We will consider the weak mazimum principle, which states that a solution (in fact a subso-
lution) to an elliptic differential equation on an open set € attains its maximum value on the
boundary of €.

Let €2 to be an open set in R". We define the boundary of €2 to be

00 =0\,

where Q denotes the closure of .

We will consider B '
Lu = a”D;ju+b"Diu+ cu > 0 in €,

where u € C°(Q) N C?(Q) and a”, b, and ¢ are (real-valued) functions on 2. When considering
maximum principles, we have three cases depending on the sign of ¢ to determine what type of
maximum values u(y) of u for y € Q) that we consider:

(a) When ¢ =0 on €2, we consider the maximum value of u.

(b) When ¢ < 0 on €, we consider nonnegative maximum values of u, i.e. maximum values
where u(y) > 0.

(¢) When we assume no sign restriction on ¢, we consider zero maximum values of u, i.e. maxi-
mum values where u(y) = 0.

Note that some lemmas and theorems consider some cases and not others.

Lemma 1 (Strict Maximum Principle). Let © be an open set in R™. Suppose u € C°(Q) N C?*(Q)
satisfies B A
Lu = a” D;ju+ b"Diu+ cu > 0 in Q

for some functions a”, b*, and ¢ on Q. Suppose L is an elliptic operator (i.e.
a’(2)€&; > Nw)[€]? for all x € Q, € € R”
for some XN(x) > 0). Then
(a) If c =0 on Q, u does not attain an interior mazimum at any y € €.

(b) If ¢ <0 on Q, u does not attain a nonnegative interior marimum at any y € €.



(¢c) When we assume no sign restriction on ¢, u does not attain an interior mazimum at any
y € Q with u(y) = 0.

Remark 1. Note that in Case (a) (and similarly for Cases (b) and (c)) it is possible that u does
not attain its supremum on Q. However, if u does attain its mazimum value at some point on €,
then it follows from the Strict Maximum Principle that u attains its mazimum value on OS2.

Proof. Suppose y € €2 is an interior maximum value of u. Then by the first derivative test
Du(y) = 0 and by the second derivative test the eigenvalues of D?*u(y) are nonpositive. Since
D?u(y) is a symmetric matrix,

A 00 0
0 X 0 -+ 0
P'D*u(y)P=A=[0 0 Ay - 0
0 0 0 An

for some \; < 0 and orthogonal n x n matrix P. Let A = (a%(y)) and A = (@) = PTAP as nxn
matrices. Then by the ellipticity of L, for all £ € R™ and ¢ = P¢,

Zgij&gj — trace(ﬁT;lf) = trace(¢" PTAPE) = trace((P€)T APE)

i=1
n

= trace(¢TAQ) = ) a((; > 0.

i=1

In particular by letting & being the i-th coordinate vector in R™, @ > 0. Also,

Z a’ (y) Diju(y) = trace(AD?u) = trace(APAPT) = trace(PT APAPT P)

2,7=1
n

= trace(PTAPA) = trace(AA) = Z’dii)\i,

=1

where we use the fact that trace(B) = trace(PT BP) for any n x n matrix B since P is orthogonal,

S0 .
= ZZL’“)W + c(y)u(y) > 0.
i=1

But @ > 0 for alli = 1,2,...,n, \; < 0 for all i = 1,2,...,n, and c(y)u(y) < 0, giving us a
contradiction. Therefore no such interior maximum ¥ exist. O

Theorem 1 (Weak Maximum Principle). Let 0 be a bounded open set in R™. Suppose u €
C'(Q) N C*Q) satisfies ) '
Lu = a"Diju+b"Dyu+ cu > 0 in 2
for some functions a¥, b', and ¢ on Q. Suppose L is an elliptic operator and
|b°]

sup — < 00.
Qp>\

Then:



(a) If c =0 on (,

sup u = sup u.
0 a0

(b) If ¢ <0 on Q,

supu < supu’,
Q o0

where ut (z) = max{u(z),0} at each x € Q.
Remark 2. Note that in Case (a) (and similarly for Case (b)) the Weak Mazimum Principle only

shows that u attains its maximum value on 0S). It is possible that u attains its maximum value on
both the interior and the boundary of ).

Example: Note that the Weak Maximum Principle does not generally hold if ¢(x) > 0 for some
x € Q. For example, consider

L= a2+ 2, u(x) =sin(lx), 2z €[0,27/4).

Then Lu = 0 in (0,27/¢) but u attains a positive interior maximum value of 1 at z = 7/2¢ while
u(z) = 0 at the endpoints x = 0 and = = 27 //.

Proof of Case (a). Suppose without loss of generality that € is contained in a slab {(x1, 22, ..., x,) :
0 <z <d} ford>0. Let
B = sup .

Let
v(z) = e for x € Q

for some constant o > 0 to be determined and consider
we(x) = u(x) + ev(z) for z € Q
for € > 0 arbitrary. We compute that

Lv = o?a'te™ + abe®
> (a?\ — alf3)e™
>0

provided « is chosen large enough that o« > 5. (Note that conceptually what this computation
shows is that the a” D;;v terms dominate the b°D;v and cv terms. The idea that the a* D;; is the
dominant term in L will appear in many proofs in this course.) By linearity,

Lw. = Lu+eLv > 0in

for all € > 0. Since € is bounded, w, attains its maximum value somewhere on . By the Strict
Maximum Principle, w. attains its maximum value on 02 and thus

SUp W = Sup w,.
Q o0



Since w, = u+ev and 1 < v < e* on (,

supu + € < supu + e
Q o9

Letting € | 0,

supu < sup u.
Q By

]

Proof of Case (b). Let Q, = {x € Q:u(x) > 0} and Ly = a" D;;+b'D;. Note that if O, = ), then
the conclusion of Case (b) is trivially true, so we may suppose Q. # ). Since Lou = Lu — cu > 0
on ., by Case (a),

SUp u = Sup u. (1)
Qs o0

Observe that
0y C{r e 0 :u(x) >0} U{r € Q:u(zr) =0}

Ifu=0o0no0,,

0 <supu =supu =0,
Qy 004

yielding a contradiction, so there exists points x € 02, such that z € 9 and u(x) > 0 and
consequently

supu =suput. (2)
0924 09

Now by (1) and (2),

supu = supu =supu < supu’.
Q Q4 a0 a0

There are several important consequences of the weak maximum.

Corollary 1 (Uniqueness of Solutions to the Dirichlet Problem). Let Q be a bounded open set in
R™. Consider the Dirichlet problem

Lu= aijDiju + b Dju+cu= f in Q,
u = on 0S,
for some functions a”, b*, ¢, and f on Q and ¢ € C°(OQ) such that L is an elliptic operator,
sup m < 00,
o A

and ¢ < 0 in Q. Then there is at most one solution u € C°(Q) N C2(Q) to the Dirichlet problem
(i.e. there may be no solution or a unique solution but there cannot be two or more solutions).

Proof. Suppose u; and us are two solutions to the Dirichlet problem. Then
L(u; —ug) =0 in £,
u; — ug = 0 on 9.

By the Weak Maximum Principle, u; — us < 0 on Q. By swapping u; and us, us —u; < 0 on Q.
Therefore u; — us = 0 on €2, i.e. u; = uy on €. O



Corollary 2 (Comparison Principle). Let Q be a bounded open set in R™. Let L = a" D;;+b'D;+c
be an elliptic operator for some functions a¥, b*, and ¢ on 0 such that

supm<oo
Q A

and ¢ <0 in Q. If u,v € C°(Q) N C*Q) such that Lu > Lv in Q and u < v on 09, then u < v
in €.

Proof. Observe that
L(u—wv)>0in (,
u— v <0 on 0.
By the Weak Maximum Principle, u — v < 0 on 052, i.e. u < v on Q. O]

Note that we have the following consequence of Corollary 2. Let €2 be a bounded open set in
R™, L = a”D;; + b'D; + ¢ be an elliptic operator for some functions a*, b’, and ¢ on € such that

v _
sup — < 00
Qp A

and ¢ < 0in , and f : Q — R. Consider the equation Lu = f in Q. Given u € C°(Q) N C?(9),
we say

(1) wis a solution if Lu = f in §,
(2) wis a subsolution if Lu > f in €, and
(3) w is a supersolution if Lu < f in .

Corollary 2 has the following obvious consequence. Suppose Ugub, Usoln; Usuper € C°(Q) N C%(Q)
such that ug,, is a subsolution, us., is a solution, and ug,per is a supersolution. Hence

Lusub Z Lusoln Z Lusuper in Q.

Further suppose that
Usub < Usoln < Usuper OI 012.

Then
Usub S Usoln S Usuper O11 Q.

References: Gilbarg and Trudinger, Section 3.1.



