Weak Maximum Principle

Brian Krummel

January 26, 2016

We will consider the *weak maximum principle*, which states that a solution (in fact a subsolution) to an elliptic differential equation on an open set Ω attains its maximum value on the boundary of Ω .

Let Ω to be an open set in \mathbb{R}^n . We define the boundary of Ω to be

$$\partial\Omega = \overline{\Omega} \setminus \Omega,$$

where $\overline{\Omega}$ denotes the closure of Ω .

We will consider

$$Lu = a^{ij} D_{ij} u + b^i D_i u + cu \ge 0 \text{ in } \Omega,$$

where $u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$ and a^{ij} , b^i , and c are (real-valued) functions on Ω . When considering maximum principles, we have three cases depending on the sign of c to determine what type of maximum values u(y) of u for $y \in \overline{\Omega}$ that we consider:

- (a) When c = 0 on Ω , we consider the maximum value of u.
- (b) When $c \leq 0$ on Ω , we consider nonnegative maximum values of u, i.e. maximum values where $u(y) \geq 0$.
- (c) When we assume no sign restriction on c, we consider zero maximum values of u, i.e. maximum values where u(y) = 0.

Note that some lemmas and theorems consider some cases and not others.

Lemma 1 (Strict Maximum Principle). Let Ω be an open set in \mathbb{R}^n . Suppose $u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$ satisfies

$$Lu = a^{ij} D_{ij} u + b^i D_i u + cu > 0 \text{ in } \Omega$$

for some functions a^{ij} , b^i , and c on Ω . Suppose L is an elliptic operator (i.e.

$$a^{ij}(x)\xi_i\xi_j \ge \lambda(x)|\xi|^2$$
 for all $x \in \Omega, \, \xi \in \mathbb{R}^n$

for some $\lambda(x) > 0$). Then

- (a) If c = 0 on Ω , u does not attain an interior maximum at any $y \in \Omega$.
- (b) If $c \leq 0$ on Ω , u does not attain a nonnegative interior maximum at any $y \in \Omega$.

(c) When we assume no sign restriction on c, u does not attain an interior maximum at any $y \in \Omega$ with u(y) = 0.

Remark 1. Note that in Case (a) (and similarly for Cases (b) and (c)) it is possible that u does not attain its supremum on $\overline{\Omega}$. However, if u does attain its maximum value at some point on $\overline{\Omega}$, then it follows from the Strict Maximum Principle that u attains its maximum value on $\partial\Omega$.

Proof. Suppose $y \in \Omega$ is an interior maximum value of u. Then by the first derivative test Du(y) = 0 and by the second derivative test the eigenvalues of $D^2u(y)$ are nonpositive. Since $D^2u(y)$ is a symmetric matrix,

$$P^{T}D^{2}u(y)P = \Lambda = \begin{pmatrix} \lambda_{1} & 0 & 0 & \cdots & 0\\ 0 & \lambda_{2} & 0 & \cdots & 0\\ 0 & 0 & \lambda_{3} & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & \lambda_{n} \end{pmatrix}$$

for some $\lambda_i \leq 0$ and orthogonal $n \times n$ matrix P. Let $A = (a^{ij}(y))$ and $\widetilde{A} = (\widetilde{a}^{ij}) = P^T A P$ as $n \times n$ matrices. Then by the ellipticity of L, for all $\xi \in \mathbb{R}^n$ and $\zeta = P\xi$,

$$\sum_{i=1}^{n} \widetilde{a}^{ij} \xi_i \xi_j = \operatorname{trace}(\xi^T \widetilde{A} \xi) = \operatorname{trace}(\xi^T P^T A P \xi) = \operatorname{trace}((P\xi)^T A P \xi)$$
$$= \operatorname{trace}(\zeta^T A \zeta) = \sum_{i=1}^{n} a^{ij} \zeta_i \zeta_j > 0.$$

In particular by letting ξ being the *i*-th coordinate vector in \mathbb{R}^n , $\tilde{a}^{ii} > 0$. Also,

$$\sum_{i,j=1}^{n} a^{ij}(y) D_{ij}u(y) = \operatorname{trace}(AD^2u) = \operatorname{trace}(AP\Lambda P^T) = \operatorname{trace}(P^T AP\Lambda P^T P)$$
$$= \operatorname{trace}(P^T AP\Lambda) = \operatorname{trace}(\widetilde{A}\Lambda) = \sum_{i=1}^{n} \widetilde{a}^{ii}\lambda_i,$$

where we use the fact that $\operatorname{trace}(B) = \operatorname{trace}(P^T B P)$ for any $n \times n$ matrix B since P is orthogonal, so

$$Lu(y) = \sum_{i=1}^{n} \tilde{a}^{ii} \lambda_i + c(y)u(y) > 0.$$

But $\tilde{a}^{ii} > 0$ for all i = 1, 2, ..., n, $\lambda_i \leq 0$ for all i = 1, 2, ..., n, and $c(y)u(y) \leq 0$, giving us a contradiction. Therefore no such interior maximum y exist. \Box

Theorem 1 (Weak Maximum Principle). Let Ω be a bounded open set in \mathbb{R}^n . Suppose $u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$ satisfies

$$Lu = a^{ij} D_{ij} u + b^i D_i u + cu \ge 0 \text{ in } \Omega$$

for some functions a^{ij} , b^i , and c on Ω . Suppose L is an elliptic operator and

$$\sup_{\Omega} \frac{|b^i|}{\lambda} < \infty$$

Then:

(a) If c = 0 on Ω , $\sup_{\Omega} u = \sup_{\partial \Omega} u$. (b) If $c \le 0$ on Ω , $\sup_{\Omega} u \le \sup_{\partial \Omega} u^+$,

where $u^+(x) = \max\{u(x), 0\}$ at each $x \in \Omega$.

Remark 2. Note that in Case (a) (and similarly for Case (b)) the Weak Maximum Principle only shows that u attains its maximum value on $\partial\Omega$. It is possible that u attains its maximum value on both the interior and the boundary of Ω .

Example: Note that the Weak Maximum Principle does not generally hold if c(x) > 0 for some $x \in \Omega$. For example, consider

$$L = \frac{\partial^2}{\partial x^2} + \ell^2, \quad u(x) = \sin(\ell x), \quad x \in [0, 2\pi/\ell].$$

Then Lu = 0 in $(0, 2\pi/\ell)$ but u attains a positive interior maximum value of 1 at $x = \pi/2\ell$ while u(x) = 0 at the endpoints x = 0 and $x = 2\pi/\ell$.

Proof of Case (a). Suppose without loss of generality that Ω is contained in a slab $\{(x_1, x_2, \ldots, x_n) : 0 < x_1 < d\}$ for d > 0. Let

$$\beta = \sup_{\Omega} \frac{|\beta|}{\lambda}.$$

Let

 $v(x) = e^{\alpha x_1}$ for $x \in \Omega$

for some constant $\alpha > 0$ to be determined and consider

$$w_{\varepsilon}(x) = u(x) + \varepsilon v(x)$$
 for $x \in \Omega$

for $\varepsilon > 0$ arbitrary. We compute that

$$Lv = \alpha^2 a^{11} e^{\alpha x_1} + \alpha b_1 e^{\alpha x_1}$$

$$\geq (\alpha^2 \lambda - \alpha \lambda \beta) e^{\alpha x_1}$$

$$> 0$$

provided α is chosen large enough that $\alpha > \beta$. (Note that conceptually what this computation shows is that the $a^{ij}D_{ij}v$ terms dominate the b^iD_iv and cv terms. The idea that the $a^{ij}D_{ij}$ is the dominant term in L will appear in many proofs in this course.) By linearity,

$$Lw_{\varepsilon} = Lu + \varepsilon Lv > 0$$
 in Ω

for all $\varepsilon > 0$. Since Ω is bounded, w_{ε} attains its maximum value somewhere on $\overline{\Omega}$. By the Strict Maximum Principle, w_{ε} attains its maximum value on $\partial\Omega$ and thus

$$\sup_{\Omega} w_{\varepsilon} = \sup_{\partial \Omega} w_{\varepsilon}.$$

Since $w_{\varepsilon} = u + \varepsilon v$ and $1 \leq v \leq e^{\alpha d}$ on Ω ,

 $\sup_{\Omega} u + \varepsilon \leq \sup_{\partial \Omega} u + \varepsilon e^{\alpha d}.$

Letting $\varepsilon \downarrow 0$,

$$\sup_{\Omega} u \le \sup_{\partial \Omega} u.$$

Proof of Case (b). Let $\Omega_+ = \{x \in \Omega : u(x) > 0\}$ and $L_0 = a^{ij}D_{ij} + b^iD_i$. Note that if $\Omega_+ = \emptyset$, then the conclusion of Case (b) is trivially true, so we may suppose $\Omega_+ \neq \emptyset$. Since $L_0u = Lu - cu \ge 0$ on Ω_+ , by Case (a),

$$\sup_{\Omega_+} u = \sup_{\partial\Omega_+} u. \tag{1}$$

Observe that

$$\partial \Omega_+ \subseteq \{x \in \partial \Omega : u(x) > 0\} \cup \{x \in \Omega : u(x) = 0\}$$

If u = 0 on $\partial \Omega_+$,

$$0 < \sup_{\Omega_+} u = \sup_{\partial \Omega_+} u = 0,$$

yielding a contradiction, so there exists points $x \in \partial \Omega_+$ such that $x \in \partial \Omega$ and u(x) > 0 and consequently

$$\sup_{\partial\Omega_{+}} u = \sup_{\partial\Omega} u^{+}.$$
 (2)

Now by (1) and (2),

 $\sup_{\Omega} u = \sup_{\Omega_{+}} u = \sup_{\partial \Omega_{+}} u \le \sup_{\partial \Omega} u^{+}.$

There are several important consequences of the weak maximum.

Corollary 1 (Uniqueness of Solutions to the Dirichlet Problem). Let Ω be a bounded open set in \mathbb{R}^n . Consider the Dirichlet problem

$$Lu = a^{ij}D_{ij}u + b^iD_iu + cu = f \text{ in } \Omega,$$

$$u = \varphi \text{ on } \partial\Omega,$$

for some functions a^{ij} , b^i , c, and f on Ω and $\varphi \in C^0(\partial \Omega)$ such that L is an elliptic operator,

$$\sup_{\Omega} \frac{|b^i|}{\lambda} < \infty,$$

and $c \leq 0$ in Ω . Then there is at most one solution $u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$ to the Dirichlet problem (i.e. there may be no solution or a unique solution but there cannot be two or more solutions).

Proof. Suppose u_1 and u_2 are two solutions to the Dirichlet problem. Then

$$L(u_1 - u_2) = 0 \text{ in } \Omega,$$

$$u_1 - u_2 = 0 \text{ on } \partial\Omega.$$

By the Weak Maximum Principle, $u_1 - u_2 \leq 0$ on $\overline{\Omega}$. By swapping u_1 and u_2 , $u_2 - u_1 \leq 0$ on $\overline{\Omega}$. Therefore $u_1 - u_2 = 0$ on $\overline{\Omega}$, i.e. $u_1 = u_2$ on $\overline{\Omega}$. **Corollary 2** (Comparison Principle). Let Ω be a bounded open set in \mathbb{R}^n . Let $L = a^{ij}D_{ij} + b^iD_i + c$ be an elliptic operator for some functions a^{ij} , b^i , and c on Ω such that

$$\sup_{\Omega} \frac{|b^i|}{\lambda} < \infty$$

and $c \leq 0$ in Ω . If $u, v \in C^0(\overline{\Omega}) \cap C^2(\Omega)$ such that $Lu \geq Lv$ in Ω and $u \leq v$ on $\partial\Omega$, then $u \leq v$ in Ω .

Proof. Observe that

$$L(u-v) \ge 0 \text{ in } \Omega,$$

$$u-v < 0 \text{ on } \partial \Omega$$

By the Weak Maximum Principle, $u - v \leq 0$ on $\partial\Omega$, i.e. $u \leq v$ on $\overline{\Omega}$.

Note that we have the following consequence of Corollary 2. Let Ω be a bounded open set in \mathbb{R}^n , $L = a^{ij}D_{ij} + b^iD_i + c$ be an elliptic operator for some functions a^{ij} , b^i , and c on Ω such that

$$\sup_{\Omega} \frac{|b^i|}{\lambda} < \infty$$

and $c \leq 0$ in Ω , and $f : \Omega \to \mathbb{R}$. Consider the equation Lu = f in Ω . Given $u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$, we say

- (1) u is a solution if Lu = f in Ω ,
- (2) u is a subsolution if $Lu \ge f$ in Ω , and
- (3) u is a supersolution if $Lu \leq f$ in Ω .

Corollary 2 has the following obvious consequence. Suppose $u_{\text{sub}}, u_{\text{soln}}, u_{\text{super}} \in C^0(\overline{\Omega}) \cap C^2(\Omega)$ such that u_{sub} is a subsolution, u_{soln} is a solution, and u_{super} is a supersolution. Hence

$$Lu_{\rm sub} \ge Lu_{\rm soln} \ge Lu_{\rm super}$$
 in Ω .

Further suppose that

 $u_{\text{sub}} \leq u_{\text{soln}} \leq u_{\text{super}} \text{ on } \partial \Omega.$

Then

 $u_{\rm sub} \leq u_{\rm soln} \leq u_{\rm super}$ on $\overline{\Omega}$.

References: Gilbarg and Trudinger, Section 3.1.

Г	-	-	-	
L	-	-	-	J