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We will consider the weak maximum principle, which states that a solution (in fact a subso-
lution) to an elliptic differential equation on an open set Ω attains its maximum value on the
boundary of Ω.

Let Ω to be an open set in Rn. We define the boundary of Ω to be

∂Ω = Ω \ Ω,

where Ω denotes the closure of Ω.
We will consider

Lu = aijDiju+ biDiu+ cu ≥ 0 in Ω,

where u ∈ C0(Ω) ∩ C2(Ω) and aij, bi, and c are (real-valued) functions on Ω. When considering
maximum principles, we have three cases depending on the sign of c to determine what type of
maximum values u(y) of u for y ∈ Ω that we consider:

(a) When c = 0 on Ω, we consider the maximum value of u.

(b) When c ≤ 0 on Ω, we consider nonnegative maximum values of u, i.e. maximum values
where u(y) ≥ 0.

(c) When we assume no sign restriction on c, we consider zero maximum values of u, i.e. maxi-
mum values where u(y) = 0.

Note that some lemmas and theorems consider some cases and not others.

Lemma 1 (Strict Maximum Principle). Let Ω be an open set in Rn. Suppose u ∈ C0(Ω)∩C2(Ω)
satisfies

Lu = aijDiju+ biDiu+ cu > 0 in Ω

for some functions aij, bi, and c on Ω. Suppose L is an elliptic operator (i.e.

aij(x)ξiξj ≥ λ(x)|ξ|2 for all x ∈ Ω, ξ ∈ Rn

for some λ(x) > 0). Then

(a) If c = 0 on Ω, u does not attain an interior maximum at any y ∈ Ω.

(b) If c ≤ 0 on Ω, u does not attain a nonnegative interior maximum at any y ∈ Ω.
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(c) When we assume no sign restriction on c, u does not attain an interior maximum at any
y ∈ Ω with u(y) = 0.

Remark 1. Note that in Case (a) (and similarly for Cases (b) and (c)) it is possible that u does
not attain its supremum on Ω. However, if u does attain its maximum value at some point on Ω,
then it follows from the Strict Maximum Principle that u attains its maximum value on ∂Ω.

Proof. Suppose y ∈ Ω is an interior maximum value of u. Then by the first derivative test
Du(y) = 0 and by the second derivative test the eigenvalues of D2u(y) are nonpositive. Since
D2u(y) is a symmetric matrix,

P TD2u(y)P = Λ =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn


for some λi ≤ 0 and orthogonal n×n matrix P . Let A = (aij(y)) and Ã = (ãij) = P TAP as n×n
matrices. Then by the ellipticity of L, for all ξ ∈ Rn and ζ = Pξ,

n∑
i=1

ãijξiξj = trace(ξT Ãξ) = trace(ξTP TAPξ) = trace((Pξ)TAPξ)

= trace(ζTAζ) =
n∑
i=1

aijζiζj > 0.

In particular by letting ξ being the i-th coordinate vector in Rn, ãii > 0. Also,

n∑
i,j=1

aij(y)Diju(y) = trace(AD2u) = trace(APΛP T ) = trace(P TAPΛP TP )

= trace(P TAPΛ) = trace(ÃΛ) =
n∑
i=1

ãiiλi,

where we use the fact that trace(B) = trace(P TBP ) for any n×n matrix B since P is orthogonal,
so

Lu(y) =
n∑
i=1

ãiiλi + c(y)u(y) > 0.

But ãii > 0 for all i = 1, 2, . . . , n, λi ≤ 0 for all i = 1, 2, . . . , n, and c(y)u(y) ≤ 0, giving us a
contradiction. Therefore no such interior maximum y exist.

Theorem 1 (Weak Maximum Principle). Let Ω be a bounded open set in Rn. Suppose u ∈
C0(Ω) ∩ C2(Ω) satisfies

Lu = aijDiju+ biDiu+ cu ≥ 0 in Ω

for some functions aij, bi, and c on Ω. Suppose L is an elliptic operator and

sup
Ω

|bi|
λ

<∞.

Then:
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(a) If c = 0 on Ω,
sup

Ω
u = sup

∂Ω
u.

(b) If c ≤ 0 on Ω,
sup

Ω
u ≤ sup

∂Ω
u+,

where u+(x) = max{u(x), 0} at each x ∈ Ω.

Remark 2. Note that in Case (a) (and similarly for Case (b)) the Weak Maximum Principle only
shows that u attains its maximum value on ∂Ω. It is possible that u attains its maximum value on
both the interior and the boundary of Ω.

Example: Note that the Weak Maximum Principle does not generally hold if c(x) > 0 for some
x ∈ Ω. For example, consider

L =
∂2

∂x2
+ `2, u(x) = sin(`x), x ∈ [0, 2π/`].

Then Lu = 0 in (0, 2π/`) but u attains a positive interior maximum value of 1 at x = π/2` while
u(x) = 0 at the endpoints x = 0 and x = 2π/`.

Proof of Case (a). Suppose without loss of generality that Ω is contained in a slab {(x1, x2, . . . , xn) :
0 < x1 < d} for d > 0. Let

β = sup
Ω

|β|
λ
.

Let
v(x) = eαx1 for x ∈ Ω

for some constant α > 0 to be determined and consider

wε(x) = u(x) + εv(x) for x ∈ Ω

for ε > 0 arbitrary. We compute that

Lv = α2a11eαx1 + αb1e
αx1

≥ (α2λ− αλβ)eαx1

> 0

provided α is chosen large enough that α > β. (Note that conceptually what this computation
shows is that the aijDijv terms dominate the biDiv and cv terms. The idea that the aijDij is the
dominant term in L will appear in many proofs in this course.) By linearity,

Lwε = Lu+ εLv > 0 in Ω

for all ε > 0. Since Ω is bounded, wε attains its maximum value somewhere on Ω. By the Strict
Maximum Principle, wε attains its maximum value on ∂Ω and thus

sup
Ω
wε = sup

∂Ω
wε.
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Since wε = u+ εv and 1 ≤ v ≤ eαd on Ω,

sup
Ω
u+ ε ≤ sup

∂Ω
u+ εeαd.

Letting ε ↓ 0,
sup

Ω
u ≤ sup

∂Ω
u.

Proof of Case (b). Let Ω+ = {x ∈ Ω : u(x) > 0} and L0 = aijDij+b
iDi. Note that if Ω+ = ∅, then

the conclusion of Case (b) is trivially true, so we may suppose Ω+ 6= ∅. Since L0u = Lu− cu ≥ 0
on Ω+, by Case (a),

sup
Ω+

u = sup
∂Ω+

u. (1)

Observe that
∂Ω+ ⊆ {x ∈ ∂Ω : u(x) > 0} ∪ {x ∈ Ω : u(x) = 0}.

If u = 0 on ∂Ω+,
0 < sup

Ω+

u = sup
∂Ω+

u = 0,

yielding a contradiction, so there exists points x ∈ ∂Ω+ such that x ∈ ∂Ω and u(x) > 0 and
consequently

sup
∂Ω+

u = sup
∂Ω

u+. (2)

Now by (1) and (2),
sup

Ω
u = sup

Ω+

u = sup
∂Ω+

u ≤ sup
∂Ω

u+.

There are several important consequences of the weak maximum.

Corollary 1 (Uniqueness of Solutions to the Dirichlet Problem). Let Ω be a bounded open set in
Rn. Consider the Dirichlet problem

Lu = aijDiju+ biDiu+ cu = f in Ω,

u = ϕ on ∂Ω,

for some functions aij, bi, c, and f on Ω and ϕ ∈ C0(∂Ω) such that L is an elliptic operator,

sup
Ω

|bi|
λ

<∞,

and c ≤ 0 in Ω. Then there is at most one solution u ∈ C0(Ω) ∩ C2(Ω) to the Dirichlet problem
(i.e. there may be no solution or a unique solution but there cannot be two or more solutions).

Proof. Suppose u1 and u2 are two solutions to the Dirichlet problem. Then

L(u1 − u2) = 0 in Ω,

u1 − u2 = 0 on ∂Ω.

By the Weak Maximum Principle, u1 − u2 ≤ 0 on Ω. By swapping u1 and u2, u2 − u1 ≤ 0 on Ω.
Therefore u1 − u2 = 0 on Ω, i.e. u1 = u2 on Ω.
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Corollary 2 (Comparison Principle). Let Ω be a bounded open set in Rn. Let L = aijDij+b
iDi+c

be an elliptic operator for some functions aij, bi, and c on Ω such that

sup
Ω

|bi|
λ

<∞

and c ≤ 0 in Ω. If u, v ∈ C0(Ω) ∩ C2(Ω) such that Lu ≥ Lv in Ω and u ≤ v on ∂Ω, then u ≤ v
in Ω.

Proof. Observe that

L(u− v) ≥ 0 in Ω,

u− v ≤ 0 on ∂Ω.

By the Weak Maximum Principle, u− v ≤ 0 on ∂Ω, i.e. u ≤ v on Ω.

Note that we have the following consequence of Corollary 2. Let Ω be a bounded open set in
Rn, L = aijDij + biDi + c be an elliptic operator for some functions aij, bi, and c on Ω such that

sup
Ω

|bi|
λ

<∞

and c ≤ 0 in Ω, and f : Ω → R. Consider the equation Lu = f in Ω. Given u ∈ C0(Ω) ∩ C2(Ω),
we say

(1) u is a solution if Lu = f in Ω,

(2) u is a subsolution if Lu ≥ f in Ω, and

(3) u is a supersolution if Lu ≤ f in Ω.

Corollary 2 has the following obvious consequence. Suppose usub, usoln, usuper ∈ C0(Ω) ∩ C2(Ω)
such that usub is a subsolution, usoln is a solution, and usuper is a supersolution. Hence

Lusub ≥ Lusoln ≥ Lusuper in Ω.

Further suppose that
usub ≤ usoln ≤ usuper on ∂Ω.

Then
usub ≤ usoln ≤ usuper on Ω.

References: Gilbarg and Trudinger, Section 3.1.
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