Weak Maximum Principle

Brian Krummel

January 26, 2016

We will consider the weak maximum principle, which states that a solution (in fact a subsolution) to an elliptic differential equation on an open set Ω attains its maximum value on the boundary of Ω.

Let Ω to be an open set in \mathbb{R}^{n}. We define the boundary of Ω to be

$$
\partial \Omega=\bar{\Omega} \backslash \Omega
$$

where $\bar{\Omega}$ denotes the closure of Ω.
We will consider

$$
L u=a^{i j} D_{i j} u+b^{i} D_{i} u+c u \geq 0 \text { in } \Omega,
$$

where $u \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ and $a^{i j}, b^{i}$, and c are (real-valued) functions on Ω. When considering maximum principles, we have three cases depending on the sign of c to determine what type of maximum values $u(y)$ of u for $y \in \bar{\Omega}$ that we consider:
(a) When $c=0$ on Ω, we consider the maximum value of u.
(b) When $c \leq 0$ on Ω, we consider nonnegative maximum values of u, i.e. maximum values where $u(y) \geq 0$.
(c) When we assume no sign restriction on c, we consider zero maximum values of u, i.e. maximum values where $u(y)=0$.

Note that some lemmas and theorems consider some cases and not others.
Lemma 1 (Strict Maximum Principle). Let Ω be an open set in \mathbb{R}^{n}. Suppose $u \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ satisfies

$$
L u=a^{i j} D_{i j} u+b^{i} D_{i} u+c u>0 \text { in } \Omega
$$

for some functions $a^{i j}, b^{i}$, and c on Ω. Suppose L is an elliptic operator (i.e.

$$
a^{i j}(x) \xi_{i} \xi_{j} \geq \lambda(x)|\xi|^{2} \text { for all } x \in \Omega, \xi \in \mathbb{R}^{n}
$$

for some $\lambda(x)>0)$. Then
(a) If $c=0$ on Ω, u does not attain an interior maximum at any $y \in \Omega$.
(b) If $c \leq 0$ on Ω, u does not attain a nonnegative interior maximum at any $y \in \Omega$.
(c) When we assume no sign restriction on c, u does not attain an interior maximum at any $y \in \Omega$ with $u(y)=0$.
Remark 1. Note that in Case (a) (and similarly for Cases (b) and (c)) it is possible that u does not attain its supremum on $\bar{\Omega}$. However, if u does attain its maximum value at some point on $\bar{\Omega}$, then it follows from the Strict Maximum Principle that u attains its maximum value on $\partial \Omega$.

Proof. Suppose $y \in \Omega$ is an interior maximum value of u. Then by the first derivative test $D u(y)=0$ and by the second derivative test the eigenvalues of $D^{2} u(y)$ are nonpositive. Since $D^{2} u(y)$ is a symmetric matrix,

$$
P^{T} D^{2} u(y) P=\Lambda=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
0 & 0 & \lambda_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

for some $\lambda_{i} \leq 0$ and orthogonal $n \times n$ matrix P. Let $A=\left(a^{i j}(y)\right)$ and $\widetilde{A}=\left(\widetilde{a}^{i j}\right)=P^{T} A P$ as $n \times n$ matrices. Then by the ellipticity of L, for all $\xi \in \mathbb{R}^{n}$ and $\zeta=P \xi$,

$$
\begin{aligned}
\sum_{i=1}^{n} \widetilde{a}^{i j} \xi_{i} \xi_{j} & =\operatorname{trace}\left(\xi^{T} \widetilde{A} \xi\right)=\operatorname{trace}\left(\xi^{T} P^{T} A P \xi\right)=\operatorname{trace}\left((P \xi)^{T} A P \xi\right) \\
& =\operatorname{trace}\left(\zeta^{T} A \zeta\right)=\sum_{i=1}^{n} a^{i j} \zeta_{i} \zeta_{j}>0
\end{aligned}
$$

In particular by letting ξ being the i-th coordinate vector in $\mathbb{R}^{n}, \widetilde{a}^{i i}>0$. Also,

$$
\begin{aligned}
\sum_{i, j=1}^{n} a^{i j}(y) D_{i j} u(y) & =\operatorname{trace}\left(A D^{2} u\right)=\operatorname{trace}\left(A P \Lambda P^{T}\right)=\operatorname{trace}\left(P^{T} A P \Lambda P^{T} P\right) \\
& =\operatorname{trace}\left(P^{T} A P \Lambda\right)=\operatorname{trace}(\widetilde{A} \Lambda)=\sum_{i=1}^{n} \widetilde{a}^{i i} \lambda_{i}
\end{aligned}
$$

where we use the fact that trace $(B)=\operatorname{trace}\left(P^{T} B P\right)$ for any $n \times n$ matrix B since P is orthogonal, so

$$
L u(y)=\sum_{i=1}^{n} \widetilde{a}^{i i} \lambda_{i}+c(y) u(y)>0
$$

But $\widetilde{a}^{i i}>0$ for all $i=1,2, \ldots, n, \lambda_{i} \leq 0$ for all $i=1,2, \ldots, n$, and $c(y) u(y) \leq 0$, giving us a contradiction. Therefore no such interior maximum y exist.
Theorem 1 (Weak Maximum Principle). Let Ω be a bounded open set in \mathbb{R}^{n}. Suppose $u \in$ $C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ satisfies

$$
L u=a^{i j} D_{i j} u+b^{i} D_{i} u+c u \geq 0 \text { in } \Omega
$$

for some functions $a^{i j}, b^{i}$, and c on Ω. Suppose L is an elliptic operator and

$$
\sup _{\Omega} \frac{\left|b^{i}\right|}{\lambda}<\infty .
$$

Then:
(a) If $c=0$ on Ω,

$$
\sup _{\Omega} u=\sup _{\partial \Omega} u .
$$

(b) If $c \leq 0$ on Ω,

$$
\sup _{\Omega} u \leq \sup _{\partial \Omega} u^{+},
$$

where $u^{+}(x)=\max \{u(x), 0\}$ at each $x \in \Omega$.
Remark 2. Note that in Case (a) (and similarly for Case (b)) the Weak Maximum Principle only shows that u attains its maximum value on $\partial \Omega$. It is possible that u attains its maximum value on both the interior and the boundary of Ω.

Example: Note that the Weak Maximum Principle does not generally hold if $c(x)>0$ for some $x \in \Omega$. For example, consider

$$
L=\frac{\partial^{2}}{\partial x^{2}}+\ell^{2}, \quad u(x)=\sin (\ell x), \quad x \in[0,2 \pi / \ell] .
$$

Then $L u=0$ in $(0,2 \pi / \ell)$ but u attains a positive interior maximum value of 1 at $x=\pi / 2 \ell$ while $u(x)=0$ at the endpoints $x=0$ and $x=2 \pi / \ell$.

Proof of Case (a). Suppose without loss of generality that Ω is contained in a slab $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right.$: $\left.0<x_{1}<d\right\}$ for $d>0$. Let

$$
\beta=\sup _{\Omega} \frac{|\beta|}{\lambda} .
$$

Let

$$
v(x)=e^{\alpha x_{1}} \text { for } x \in \Omega
$$

for some constant $\alpha>0$ to be determined and consider

$$
w_{\varepsilon}(x)=u(x)+\varepsilon v(x) \text { for } x \in \Omega
$$

for $\varepsilon>0$ arbitrary. We compute that

$$
\begin{aligned}
L v & =\alpha^{2} a^{11} e^{\alpha x_{1}}+\alpha b_{1} e^{\alpha x_{1}} \\
& \geq\left(\alpha^{2} \lambda-\alpha \lambda \beta\right) e^{\alpha x_{1}} \\
& >0
\end{aligned}
$$

provided α is chosen large enough that $\alpha>\beta$. (Note that conceptually what this computation shows is that the $a^{i j} D_{i j} v$ terms dominate the $b^{i} D_{i} v$ and $c v$ terms. The idea that the $a^{i j} D_{i j}$ is the dominant term in L will appear in many proofs in this course.) By linearity,

$$
L w_{\varepsilon}=L u+\varepsilon L v>0 \text { in } \Omega
$$

for all $\varepsilon>0$. Since Ω is bounded, w_{ε} attains its maximum value somewhere on $\bar{\Omega}$. By the Strict Maximum Principle, w_{ε} attains its maximum value on $\partial \Omega$ and thus

$$
\sup _{\Omega} w_{\varepsilon}=\sup _{\partial \Omega} w_{\varepsilon} .
$$

Since $w_{\varepsilon}=u+\varepsilon v$ and $1 \leq v \leq e^{\alpha d}$ on Ω,

$$
\sup _{\Omega} u+\varepsilon \leq \sup _{\partial \Omega} u+\varepsilon e^{\alpha d}
$$

Letting $\varepsilon \downarrow 0$,

$$
\sup _{\Omega} u \leq \sup _{\partial \Omega} u .
$$

Proof of Case (b). Let $\Omega_{+}=\{x \in \Omega: u(x)>0\}$ and $L_{0}=a^{i j} D_{i j}+b^{i} D_{i}$. Note that if $\Omega_{+}=\emptyset$, then the conclusion of Case (b) is trivially true, so we may suppose $\Omega_{+} \neq \emptyset$. Since $L_{0} u=L u-c u \geq 0$ on Ω_{+}, by Case (a),

$$
\begin{equation*}
\sup _{\Omega_{+}} u=\sup _{\partial \Omega_{+}} u \tag{1}
\end{equation*}
$$

Observe that

$$
\partial \Omega_{+} \subseteq\{x \in \partial \Omega: u(x)>0\} \cup\{x \in \Omega: u(x)=0\}
$$

If $u=0$ on $\partial \Omega_{+}$,

$$
0<\sup _{\Omega_{+}} u=\sup _{\partial \Omega_{+}} u=0
$$

yielding a contradiction, so there exists points $x \in \partial \Omega_{+}$such that $x \in \partial \Omega$ and $u(x)>0$ and consequently

$$
\begin{equation*}
\sup _{\partial \Omega_{+}} u=\sup _{\partial \Omega} u^{+} . \tag{2}
\end{equation*}
$$

Now by (1) and (2),

$$
\sup _{\Omega} u=\sup _{\Omega_{+}} u=\sup _{\partial \Omega_{+}} u \leq \sup _{\partial \Omega} u^{+} .
$$

There are several important consequences of the weak maximum.
Corollary 1 (Uniqueness of Solutions to the Dirichlet Problem). Let Ω be a bounded open set in \mathbb{R}^{n}. Consider the Dirichlet problem

$$
\begin{aligned}
L u & =a^{i j} D_{i j} u+b^{i} D_{i} u+c u=f \text { in } \Omega, \\
u & =\varphi \text { on } \partial \Omega,
\end{aligned}
$$

for some functions $a^{i j}, b^{i}, c$, and f on Ω and $\varphi \in C^{0}(\partial \Omega)$ such that L is an elliptic operator,

$$
\sup _{\Omega} \frac{\left|b^{i}\right|}{\lambda}<\infty
$$

and $c \leq 0$ in Ω. Then there is at most one solution $u \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ to the Dirichlet problem (i.e. there may be no solution or a unique solution but there cannot be two or more solutions). Proof. Suppose u_{1} and u_{2} are two solutions to the Dirichlet problem. Then

$$
\begin{aligned}
L\left(u_{1}-u_{2}\right) & =0 \text { in } \Omega \\
u_{1}-u_{2} & =0 \text { on } \partial \Omega .
\end{aligned}
$$

By the Weak Maximum Principle, $u_{1}-u_{2} \leq 0$ on $\bar{\Omega}$. By swapping u_{1} and $u_{2}, u_{2}-u_{1} \leq 0$ on $\bar{\Omega}$. Therefore $u_{1}-u_{2}=0$ on $\bar{\Omega}$, i.e. $u_{1}=u_{2}$ on $\bar{\Omega}$.

Corollary 2 (Comparison Principle). Let Ω be a bounded open set in \mathbb{R}^{n}. Let $L=a^{i j} D_{i j}+b^{i} D_{i}+c$ be an elliptic operator for some functions $a^{i j}, b^{i}$, and c on Ω such that

$$
\sup _{\Omega} \frac{\left|b^{i}\right|}{\lambda}<\infty
$$

and $c \leq 0$ in Ω. If $u, v \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ such that $L u \geq L v$ in Ω and $u \leq v$ on $\partial \Omega$, then $u \leq v$ in Ω.

Proof. Observe that

$$
\begin{aligned}
L(u-v) & \geq 0 \text { in } \Omega \\
u-v & \leq 0 \text { on } \partial \Omega .
\end{aligned}
$$

By the Weak Maximum Principle, $u-v \leq 0$ on $\partial \Omega$, i.e. $u \leq v$ on $\bar{\Omega}$.
Note that we have the following consequence of Corollary 2 . Let Ω be a bounded open set in $\mathbb{R}^{n}, L=a^{i j} D_{i j}+b^{i} D_{i}+c$ be an elliptic operator for some functions $a^{i j}, b^{i}$, and c on Ω such that

$$
\sup _{\Omega} \frac{\left|b^{i}\right|}{\lambda}<\infty
$$

and $c \leq 0$ in Ω, and $f: \Omega \rightarrow \mathbb{R}$. Consider the equation $L u=f$ in Ω. Given $u \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$, we say
(1) u is a solution if $L u=f$ in Ω,
(2) u is a subsolution if $L u \geq f$ in Ω, and
(3) u is a supersolution if $L u \leq f$ in Ω.

Corollary 2 has the following obvious consequence. Suppose $u_{\text {sub }}, u_{\text {soln }}, u_{\text {super }} \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ such that $u_{\text {sub }}$ is a subsolution, $u_{\text {soln }}$ is a solution, and $u_{\text {super }}$ is a supersolution. Hence

$$
L u_{\text {sub }} \geq L u_{\text {soln }} \geq L u_{\text {super }} \text { in } \Omega
$$

Further suppose that

$$
u_{\text {sub }} \leq u_{\text {soln }} \leq u_{\text {super }} \text { on } \partial \Omega
$$

Then

$$
u_{\text {sub }} \leq u_{\text {soln }} \leq u_{\text {super }} \text { on } \bar{\Omega}
$$

References: Gilbarg and Trudinger, Section 3.1.

